

- 1. Course code and name: (0905212) Chemical Engineering Principles II
- 2. Class schedule: 3 Credits Hours
- **3. Instructor:** Dr. Linda Al-Hmoud
 - a. Office: CHE 305
 - b. Email address: l.alhmoud@ju.edu.jo, linda.ju14@gmail.com
- 4. Text book: R. M. Felder and R.W. Rousseau, *Elementary Principles of Chemical Processes*,
 - 3rd Edition, Wiley, New York (2005).

5. References:

Book: D.M. Himmelblau and J.B. Riggs, Basic Principles and Calculations in Chemical Engineering, 7th Ed., Prentice Hall.

Journals:

- Chemical Engineering Journal: <u>http://www.journals.elsevier.com/chemical-engineering-journal/</u>
- Chemical Engineering Science: <u>http://www.journals.elsevier.com/chemical-engineering-science</u>
- 6. Website: <u>http://eacademic.ju.edu.jo/l.alhmoud</u> Your <u>e-learning</u> account (<u>https://elearning.ju.edu.jo/</u>) Live streaming platform: Microsoft TEAMS

7. Course information:

- a. **Catalog description (2019)**: Forms of energy, the first law of thermodynamics. Energy balance on a closed system. Steady-state energy balance on open systems and mechanical energy balance. Energy balances on non-reactive and reactive systems. Simultaneous material and energy balances. Balances on transient systems. The course has 2 credit hours in class and 1 credit hour as a laboratory computer work using available software in which they build flow sheets and solve mass/energy balances of various chemical engineering processes, combustion, heat of reactions, solutions.
- b. Prerequisite: (0905211) Chemical Engineering Principles 1
- c. Course classification: Mandatory course in the B.Sc. program.
- **8. Specific goals of the course:** This course is devoted primarily to the basic principles of chemical engineering. Upon the successful completion of the course, the student will be able to:
 - Differentiate between closed & open system, isothermal & adiabatic process, flow & shaft work, define the reference state, and know how & when to apply Bernoulli equation. [O1]
 - Calculate dry and wet bulb temperature, humid volume, adiabatic cooling, and use Psychrometric chart. [O1]
 - Formulate and apply material and energy balances on nonreactive systems. [O2]
 - Find and calculate heat of reaction for exothermic & endothermic reactions, using heat of formation and heat of combustion methods. [O1]
 - Perform material and energy balance calculations on a chemical reactor, and solve them for different reactive systems. [O2]

9. Course topics: Course topics will be covered through 28 (50 minutes) classes according to the following distribution:

Торіс	# of classes
Forms of Energy: The First Law of Thermodynamics, Kinetic and Potential Energy, Energy	
Balances on Closed Systems, Flow Work and Shaft Work, Specific Properties and Enthalpy, The	9
Steady-State Open-System Energy Balance, Reference States and State Properties, Steam Tables,	9
Energy Balance Procedures, Mechanical Energy Balances	
Elements of Energy Balance Calculations, Changes in Pressure at Constant Temperature,	
Changes in Temperature, Estimation of Heat Capacities, Energy Balances on Single-Phase	
Systems, Phase Change Operations, Energy Balances on Processes Involving Phase Changes,	10
Psychrometric Charts, Adiabatic Cooling, Heats of Solution and Mixing, Balances on Dissolution	
and Mixing Processes, Enthalpy-Concentration Charts	
Heats of Reaction, Hess's Law, Heats of Formation and Heats of Combustion, Energy Balances	
on Reactive Processes/General Procedures, Processes with Unknown Outlet Conditions:	9
Adiabatic Reactors, Fuels and Their Properties, Adiabatic Flame Temperature	

During the laboratory computer work, the following topics will be covered:

Торіс	# of labs
Basics of MATLAB	6
Basics of CHEMCAD	6
Presenting Group Projects	2

10. Policies and procedures:

- Students are expected to **attend each class session** and they are responsible for all material, announcements, and schedule changes discussed in class. The university policy regarding the attendance will be strictly adhered.
- All cases of academic dishonesty will be handled in accordance with university policies and regulations.
- You are encouraged to use **computer software** such as EXCEL, MATLAB, or POLYMATH to perform the required computations and to represent your findings in graphs or tables.

11. Instructional methods:

Lectures, class discussions, and in-class problem solving

12. Assessment & Grading:

A weighted average grade will be calculated as follows:

Total	:	100%
Final examination	:	50%
Midterm examinations	:	30%
Group Project & Participation	:	8%
Quizzes [2]	:	12%

13. Contribution of Course to Meeting the Professional Component:

This course contributes to building the fundamental concepts in fluid mechanics and thermodynamics and their applications in Chemical Engineering.

14. Relationship to Program Outcomes:

1	2	3	4	5	6	7
✓	~					